

Introduction

- Cyber-Physical Systems (CPS) are engineered systems combining computation, communications, and physical resources. e.g. self-driving car, drone, smart grid
- One crucial security risk in CPS is sensor attacks, which have motivated many researches on **attack detection**.
- Existing detection works overlooks the trade-off between **detection delay** and **false alarms**, but we argue that attack detection should **dynamically balance** the two metrics at different physical states.
- Challenges:
 - **timing** is essential for safety-critical CPS.
 - it is non-trivial to calculate a safe deadline in an online manner.
 - detection delay should be less than deadline, but a shorter delay is not always favorable.
- **Our contributions:** we propose a real-time **adaptive** attack detection system that can **dynamically** adjust detection delay and thus false alarms according to the varying system state.

Design Overview

Detection Deadline Estimator:

- reachability-based technique
- dynamically estimate the detection deadline
- Adaptive Detector:
 - window-based detection algorithm
 - dynamically adapt its detection delay
- Data Logger:
 - sliding-window based data logging protocol
 - keeps trustworthy data for the deadline estimation and attack detection

Adaptive Sensor Attack Detection for Cyber-Physical Systems

* accepted by 59th Design Automation Conference (DAC), 2022

Advisor: Dr. Fanxin Kong Lin Zhang **Department of Electrical Engineering and Computer Science**

• Detection Deadline Estimation

- Safety Analysis
 - System dynamics $\boldsymbol{x}_{t+1} = A\boldsymbol{x}_t + B\boldsymbol{u}_t + \boldsymbol{v}_t$
 - **Reachable set** \mathcal{R} includes all possible
 - system states evolving from initial state x_0
 - If reachable set over-approximation does **not intersect** with unsafe set, i.e. $\overline{\mathcal{R}} \cap \mathcal{F} = \emptyset$, the system is guaranteed to be safe
- Over-approximation of the Reachable Set
 - $\boldsymbol{x}_t \subseteq \bar{\mathcal{R}}(\boldsymbol{x}_0, t) = A^i \bar{\boldsymbol{x}}_0 \oplus \bigoplus A^j B \mathcal{B}_{\mathcal{U}} \oplus \bigoplus A^k \mathcal{B}_{\epsilon}$
 - denotes the Minkowski sum

Adaptive Window based Attack Detection

- This basic detection algorithm tracks the average residual between predicted and observed states within a detection **window**.
- The detection window should not longer than the detection deadline for safety.
- With a **longer detection delay**, detector tends to have **lower false alarm rates** but may miss the detection deadline; and vice versa.
- We design a protocol that can dynamically adapt the detection delay and thus false alarms to meet the detection **deadline** and improve **usability**. The protocol guarantees that **no data escape** from detection due to the change of detection window size.

Data Logging Protocol

- We design a **sliding-window** based logging protocol to record historical residuals and **state estimates**. The sliding window moves forward as time ticks.
- At each control step t, the protocol **buffers**, holds, and releases certain data points. Buffered data can be compromised, and data outside the current window is regarded trustworthy and thus held.

SCAN for PDF

mulator	Attack	Strategy	#FP	#DM
ircraft Pitch	Bias	Adaptive	73	0
		Fixed	42	96
	Delay	Adaptive	3	0
		Fixed	2	97
	Replay	Adaptive	34	0
		Fixed	8	100
uadrotor	Bias	Adaptive	73	7
		Fixed	55	99
	Delay	Adaptive	6	0
		Fixed	2	87
	Replay	Adaptive	6	0
		Fixed	2	$\overline{59}$