

Real-Time Attack-Recovery for Cyber-Physical Systems Using Linear Approximations

Lin Zhang¹, Xin Chen², Fanxin Kong¹, Alvaro A. Cardenas³

¹Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse NY ²Department of Computer Science, University of Dayton, Dayton OH ³Department of Computer Science and Engineering, University of California at Santa Cruz, Santa Cruz CA

Motivation

CPS attacks cannot be handled by classic cyber security mechanisms Sensor spoofing attack

- software attacks
 - malicious sensor information
 - drive the **physical system** to unsafe state
- transduction attacks

spoofer

manipulates a **physical property** that affects sensor reading

Motivation

Most of the literature focus on attack-detection

- 32 recent CPS security surveys
 - most of them talked about attack-detection
 - only 8 of them described response to attacks

After detecting an attack, what should we do? This paper focuses on **attack recovery** in a real time manner

Motivational Example

Cruise Control

Attack scenarios:

(1) Modification:

adding/subtracting some values (2) Replay:

use data from previous time period (3) Delay:

intentionally delay the data

Unsafe set: the set of states that define catastrophic events. Target set: the set of desired states. E.g., planned paths, reference values.

Estimate

Deadline

x(t)

0

state

RECOVERY

original controller

checkpointer

- record historical data
 - state estimate $\vec{x}(t)$
 - control input $\vec{u}(t)$

an attack is launched at t₀

Normal Mode

attack is detected after at most t_a

• switch to the recovery mode

estimate reconstructor

• rebuild state estimate at $t_0 + t_a$

deadline calculator

calculate a safety deadline t_d

Recovery Mode

Recovery Mode

recovery control calculator

- compute a Piece-Wise Constant control sequence
 - rebuilt state \rightarrow target set
 - within safety deadline ٠

Recovery Mode

recovery controller

- apply recovery control sequence immediately
- back to target state set before $t_0 + t_a + t_d$

Estimate Reconstructor

Deadline Calculator

Syracuse University

Real-time Recovery using PWC Control

Evaluation - Benchmarks

1. Vehicle Turning

$$\dot{x} = -\frac{25}{3}x + 5u$$

2. Series RLC Circuit

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{C} \\ -\frac{1}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix}$$

3. DC Motor Position

Armature circuit

Evaluation – Results for Vehicle Turning

our method can do real-time recovery

Legend:

Dotted Black: Reference state Red: No recovery Yellow: Non-real-time recovery Blue: Real-time recovery

Evaluation – Other Results

Syracuse University

Evaluation – Time Cost

overhead is small

B	δ	A	k	X_0	T_D	T_F	T_S	Total	%
#1	20	M	3	0.35	0.29	0.07	0.03	0.74	3.71%
		D	4	0.34	0.35	0.06	0.02	0.77	3.84%
		R	5	0.34	0.41	0.07	0.03	0.85	4.24%
#2	20	M	9	0.34	0.67	0.22	0.07	1.30	6.52%
		D	18	0.34	1.62	0.41	0.14	2.49	12.46%
		R	8	0.31	0.65	0.12	0.06	1.14	5.69%
#3	100	M	20	0.53	1.59	1.00	0.28	3.40	3.40%
		D	20	0.28	1.54	1.70	0.29	3.81	3.81%
		R	11	0.33	0.90	0.41	0.12	1.76	1.76%
#4	20	M	21	0.34	2.02	0.97	0.31	3.64	18.21%
		D	21	0.36	2.02	1.50	0.29	4.17	20.86%
		R	17	0.35	1.43	0.75	0.21	2.74	13.69%
#5	20	M	20	0.53	1.81	7.52	1.14	11.0	55.01%
		D	20	0.43	1.75	7.38	1.14	10.70	53.55%
		R	14	0.50	1.48	3.49	0.59	6.06	$\overline{30.28\%}$

Evaluation – Scalability Analysis

Scalable Heating Model

heating in a point of a rod located at **1/3** of the length recording the temperature at **2/3** of the length # of variables is scalable n= 25,30,35,40,45

The temperatures of the selected points on the rod is described by

$$\dot{\vec{x}} = A\vec{x} + Bu$$
 such that

$$A = \frac{\alpha}{h^2} \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}$$

overhead increase with # of variables

n	X_0	T_D	T_F	T_S	Total	%
20	0.57	0.96	17.37	4.99	23.89	11.94%
25	0.57	0.99	41.26	6.95	49.77	24.88%
30	0.63	1.03	59.59	8.00	69.25	34.62%
35	0.66	1.11	74.64	10.22	86.63	43.32%
40	0.74	1.17	81.77	13.15	96.83	48.42%
45	0.75	1.28	86.68	17.23	105.94	52.97%

Summary

- A new attack-recovery architecture
 - estimate reconstructor
 - deadline calculator
 - recovery control calculator

- A formal method to conservatively **estimate** the current and future states with a control **stepwise error bound** $\varepsilon > 0$ based on a Linear Time-Invariant (**LTI**) approximate
- Formulate the reach-avoid problem as a Linear Programming (LP) restriction with safety and target specifications
- Formal analysis + Simulation + Scalability analysis

Real-Time Attack-Recovery for Cyber-Physical Systems Using Linear Approximations

Thank you. Q&A

