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Motivation

e Security vulnerabilities in automobiles
* increasing autonomy and connectivity
* non-invasively compromise sensors and spoof the controller
* exacerbated consequences on safety
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* Validating sensor data before the controller acts on them
* model-based validation ( ®
* inherent sensor redundancy (V) )




Inherent Sensor Redundancy
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Approach

* Objective: exploits inherent redundancy among heterogeneous
sensors for detecting anomalous sensor measurements

* Deep Autoencoder
* consists of two main parts: the encoder and the decoder
* |learns a consistent pattern from vehicle sensor data in normal states
e utilizes it as the nominal behavior for the detection

e Overview

* Training Encoder and Decoder (using normal data)
* Reconstruction Error Measurements

e Threshold Estimation { @



Deep Autoencoder Training
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Training target : Minimize the difference between Input and Output.
Such difference are also called Reconstruction Error. (training loss)
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Reconstruction Error Measurements

e Different Reconstruction Error
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Normal data Small Reconstruction Error

Anomaly data Large Reconstruction Error
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Threshold Estimation

* The reconstruction error
* Within a range for normal data
* Define a threshold as the upper bound of the range
* Beyond the threshold - anomalies

e The definition of threshold T
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* A relatively small and stable range can provide a meaningful
threshold and be sensitive to anomalous behaviors (
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Dataset

e AEGIS dataset (real world)
e Sensors on CAN bus
* GPS Sensors
* IMU Sensors

e Correlated with each other
e acceleration pedal
* engine RPM
* GPS-derived speed
* vehicle speed



Experiment Results

MSE MSLE MAE

Autoencoder network: 4-layers encoder and a 4-layers decoder
input/output size = 40
Training data : 10,000 entries of normal driving data
randomly replace 25 entries with anomalous data 6
Test data: 10,000 entries in 500 seconds, 25 anomalous data



Experiment Results

* Distribution of reconstruction error of
MSLE based Deep Autoencoderwith
various testing samples. Each sample
has a continuous anomalous data
injection on a different sensor.

* Anomaly 1 - vehicle speed data
 Anomaly 2 - accPedal data
* Anomaly 3 - vehicle acceleration data

* Anomaly 4 - engine speed data

Detection sensitivity to anomalous data of different sensors < .
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