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• Security vulnerabilities in automobiles
• increasing autonomy and connectivity

• non-invasively compromise sensors and spoof the controller

• exacerbated consequences on safety

• Validating sensor data before the controller acts on them
• model-based validation

• inherent sensor redundancy     (√)
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Inherent Sensor Redundancy

Challenges:

• lack of anomalous sensor data

• difficult to find a closed-form 
expression of the sensor relationship

• conventional assumption of 
disturbances on sensing
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Multiple sensors simultaneously respond 
to the same physical aspect in a related
manner.
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Approach

• Objective: exploits inherent redundancy among heterogeneous             
sensors for detecting anomalous sensor measurements

• Deep Autoencoder
• consists of two main parts: the encoder and the decoder

• learns a consistent pattern from vehicle sensor data in normal states

• utilizes it as the nominal behavior for the detection

• Overview
• Training Encoder and Decoder (using normal data)

• Reconstruction Error Measurements

• Threshold Estimation



Deep Autoencoder Training

Input Set of 
sensors data
(normal) 

Output set of 
reconstructed 
sensors data 

Training target : Minimize the difference between Input and Output. 
Such difference are also called Reconstruction Error. (training loss)



Reconstruction Error Measurements

• Different Reconstruction Error
• Mean Squared Error          

• Mean Square Logarithmic Error

• Mean Absolute Error

Normal data

Anomaly data 

Small Reconstruction Error

Large Reconstruction Error



Threshold Estimation

• The reconstruction error 
• Within a range for normal data
• Define a threshold as the upper bound of the range
• Beyond the threshold   →   anomalies

• The definition of threshold T

• A relatively small and stable range can provide a meaningful 
threshold and be sensitive to anomalous behaviors



Dataset

• AEGIS dataset (real world)
• Sensors on CAN bus

• GPS Sensors

• IMU Sensors

• Correlated with each other
• acceleration pedal

• engine RPM

• GPS-derived speed

• vehicle speed



Experiment Results

MSE MSLE MAE

Autoencoder network: 4-layers encoder and a 4-layers decoder
input/output size = 40

Training data : 10,000 entries of normal driving data
randomly replace 25 entries with anomalous data

Test data:  10,000 entries in 500 seconds, 25 anomalous data



Experiment Results

Detection sensitivity to anomalous data of different sensors

• Distribution of reconstruction error of 
MSLE based Deep Autoencoderwith
various testing samples. Each sample 
has a continuous anomalous data 
injection on a different sensor.

• Anomaly 1 - vehicle speed data

• Anomaly 2 - accPedal data

• Anomaly 3 - vehicle acceleration data

• Anomaly 4 - engine speed data
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